Abstract

ABSTRACTRice flour (37% moisture content) was used to examine the effects of feed rate and screw speed on the specific energy input during single‐screw extrusion cooking. Torque, raised by decreasing screw speed or increasing feed rate, was found to be a power law function of the ratio of feed rate to screw speed (Fr/Ss) with r2 > 0.94. Specific mechanical energy (SME) calculated from torque also was a power law function of Fr/Ss with r2 >0.84 and negative power law indices. The SME obtained was in the 225–481 kJ/kg range. Thus the extruder can be considered low shear. Increasing SME raised the die temperature and decreased both intrinsic viscosity and water absorption index (WAI). The degree of gelatinization and intrinsic viscosity of extrudates also were power law functions of Fr/Ss. The intrinsic viscosity correlated well with the degree of gelatinization, WAI, and cooking loss, and appeared to be a good index of the extrudate properties. Different screw profiles also affect torque measurement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.