Abstract

Familial Alzheimer's disease (FAD) is associated with mutations in the β-amyloid peptide (Aβ) or the amyloid precursor protein (APP). FAD mutations of Aβ were incorporated into a macrocyclic peptide that mimics a β-hairpin to study FAD point mutations K16N, A21G, E22Δ, E22G, E22Q, E22K, and L34V and their effect on assembly, membrane destabilization, and cytotoxicity. The X-ray crystallographic structures of the four E22 mutant peptides reveal that the peptides assemble to form the same compact hexamer. Sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) experiments reveal that the mutant FAD peptides assemble as trimers or hexamers, with peptides that have greater positive charge assembling as more stable hexamers. Mutations that increase the positive charge also increase the cytotoxicity of the peptides and their propensity to destabilize lipid membranes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.