Abstract

Studying the bioeffects of electric fields have been the subject of ongoing research which led to promising therapeutic effect, particularly in cancer treatment. Here, we investigated the impact of low-intensity, intermediate-frequency alternating electric fields on the differentiation of human myeloid leukemia cell line U937. The results showed a near twofold increase in differentiation of U937 cells treated for 24 h by alternating 600 kHz, 150 V/m electric fields, in comparison to their control groups. This measure was evaluated by latex bead phagocytosis assay, nitro blue tetrazolium test, and cell cycle analysis which revealed a significant shift in the number of cells from G2 +M to G0 +G1 phases. The simulation result for the intracellular field intensity showed around 50% attenuation with respect to the applied external field for our setup which ruled out masking of the applied field by the internal electric noise of the cell. Based on previous studies we postulate a possible calcium-related effect for the observed differentiation, yet the exact underlying mechanism requires further investigation. Finally, our results may offer a potential therapeutic method for leukemia in the future.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call