Abstract
Menstrual blood-derived stem cells from endometriosis patients (E-MenSCs) have different gene expression patterns than those from healthy nonendometriotic females (NE-MenSCs). Exosomes extracted from mesenchymal stem cells and plants are considered for the treatment of various diseases. This study aimed to compare the effects of exosomes derived from NE-MenSCs (C-exos) and those from the roots of ginger (P-exos) on E-MenSCs. E-MenSCs at the third passage were used, and after evaluating the effective dosage with MTT, C-exos (200 µg/mL) or P-exos (100 µg/mL) were added to treat them. Following a 72-h incubation, the cells were analyzed with annexin V/PI test to evaluate the apoptosis rate. Also, genes related to inflammation (IL-6, IL-8, IL-1β, NF-κB, COX2), cell cycle (Cyclin D1), the steroid pathway (ESR1), migration and invasion (MMP-2, MMP-9, VEGF), and the apoptosis pathway (BAX, BCL2) were detected by real-time PCR. Apoptosis was increased in both the P- and C-exos groups. The expression levels of IL-6 and IL-1β were significantly lower in the P-exos group than in the E-MenSCs group. The expression levels of IL-8, NF-κB, COX-2, and MMP-9 were significantly decreased in both the P-exos group and the C-exos group. The expression level of VEGF was significantly lower in the P-exos group than in the E-MenSCs group. The BAX/BCL2 ratio was much lower in the P-exos group than in the E-MenSCs group. In this study, we established the feasibility of using a novel natural nontoxic material to target endometriotic mesenchymal stem cells to modify their gene expression and function toward healthy cells. Both C-exos and P-exos showed positive effects on the gene expression and function of endometriotic cells. Considering that plant exosomes are easier to access and less expensive, they can be considered for clinical use in improving the symptoms of endometriosis patients.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have