Abstract

The ovarian steroid hormone, estradiol, is one of several peripheral metabolic signal modulators that are integrated at the level of the arcuate nucleus of the hypothalamus (ARH), and is implicated in the control of ARH neuropeptides that maintain energy balance, including neuropeptide Y (NPY) and proopiomelanocortin (POMC). The present studies utilized quantitative real-time RT-PCR techniques to examine the hypothesis that estradiol regulates ARH NPY, POMC, and cocaine- and amphetamine-related transcript (CART) gene expression during acute insulin-induced hypoglycemia (IIH) and that adaptive modifications in transcriptional reactivity during recurring exposure are steroid dependent. ARH tissue was obtained by micropunch dissection from estradiol benzoate- and oil-implanted ovariectomized (OVX) rats that were treated by subcutaneous injection of one or four doses of the intermediate insulin formulation, Humulin NPH, over as many days, or vehicle alone. Our data show that in OVX plus estradiol benzoate and OVX plus oil groups, a single injection of insulin did not modify gene expression profiles, with the exception of acute hypoglycemic reduction of ARH NPY transcripts in the presence of estrogen. Prior exposure to daily hypoglycemia significantly diminished basal NPY and POMC mRNA levels in estradiol benzoate-, but not oil-implanted OVX rats, but elevated baseline CART transcripts in oil-treated animals. Recurring IIH enhanced ARH NPY gene expression relative to baseline, irrespective of the estradiol manipulation, but net tissue levels were greater in the absence of estrogen. In contrast, reexposure to hypoglycemia decreased POMC and CART gene transcription in estradiol benzoate- and oil-implanted OVX animals, respectively, relative to the single-dose groups. These studies show that estrogen modulates the impact of precedent exposure to IIH on basal and/or hypoglycemia-associated patterns of expression of ARH neuropeptide genes of characterized significance for energy homeostasis. The novel evidence for transcriptional acclimation of NPY, POMC, and CART to recurring IIH supports the possibility that adaptation of compensatory behavioral and physiological responses to acute versus chronic exposure to this metabolic stress may reflect neural regulatory mechanisms involving one or more neurotransmitters encoded by these genes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call