Abstract

Experiments were conducted in an obstructed 3-m-long duct to investigate the effects of equivalence ratio, thickness of rupture membrane, and vent area on vented hydrogen–air deflagrations. Shockwave-induced pressure peaks were observed inside and outside the duct in some tests. In the tests with one end of the duct totally opened, the location at which the overall maximum internal overpressure is achieved depends on the thickness of the rupture membrane for a given equivalence ratio; however, it is independent of equivalence ratio for a given thickness of rupture membrane. The pressure peak resulting from an external explosion always dominates the pressure–time histories 1.5 m downstream of the duct exit. The maximum internal and external overpressures first increase and then decrease as the equivalence ratio increases from 0.26 to 3.57, unexpectedly; none of these increase monotonically with an increase in the thickness of the rupture membrane. Two explosion venting regimes, namely sonic and subsonic, are observed. During sonic venting, the maximum internal overpressure increases exponentially with a decrease in vent area; it is nearly independent of the vent area during subsonic venting when the vent area is larger than approximately 19% of the cross-sectional area of the duct.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.