Abstract

In hypertension, endothelium-dependent relaxation is attenuated and this attenuation contributes to the increased peripheral resistance. However, the role of endothelium-derived hyperpolarizing factor (EDHF) in the arteries of hypertensive rats remains unclear. Therefore, the aim of this study was to evaluate the role of EDHF in the femoral resistance arteries of hypertensive rats. The femoral resistance arteries were isolated from 5-, 15- and 25-week-old spontaneously hypertensive rats (SHR) and age-matched Wistar Kyoto rats (WKY). Changes in internal diameter were examined with videomicroscopy. EDHF-mediated dilatation was determined by differences between the degree of acetylcholine (ACh)-induced dilatation in the presence of NG-monomethy-L-arginine (L-NMMA) plus a prostaglandin I2 inhibitor (indomethacin) and the degree of such dilatation in the presence of L-NMMA, indomethacin and KCl. Charybdotoxin (CTx) and apamin (a Ca2+-activated K+ channel [KCa] inhibitor)-sensitive EDHF dilatation was also compared between in 5-, 15- and 25-week-old SHR and WKY. ACh-induced vasodilatation was not different between 5-week-old SHR and WKY. There was no difference between NO- and EDHF-mediated vasodilatation in 5-week-old rats. ACh-induced vasodilatation was weaker in 15-week-old SHR than in WKY. NO-mediated vasodilatation did not differ between the two groups. EDHF-mediated dilatation was attenuated in SHR but not in WKY. ACh-induced dilatation was weaker in 25-week-old SHR than in WKY. NO- and EDHF-mediated vasodilatation were attenuated in SHR but not WKY. EDHF-mediated vasodilatation was attenuated before the loss of NO-mediated vasodilatation in the femoral resistance arteries of SHR. The attenuation of this vasodilatation was mediated by the CTx plus apamin-sensitive EDHF.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.