Abstract

This paper presents an experimental study on the performance of concrete, subjected to high temperatures. Investigation was carried out by using two mixtures: an Ordinary Concrete (OC) and High Performance Concrete (HPC) with 10% of Silica Fume (SF) replaced of cement weight and 1,5% of super plasticizer, the water-binder (w/b) ratio used was 0,5 and 0,32 respectively. The produced concrete specimens are heated at a rate of 7 °C/min up to different temperatures (150, 300, 450, 600 and 900°C). In order to ensure a uniform temperature through the specimen, the temperature is held constant at the temperature stage for one hour before cooling. Mechanical properties at ambient temperature and residual mechanical properties after heating have already been determined. We examined also the effect of high temperature on the aggregate-cement paste interface and aggregate microstructure of the concrete specimens by scanning electron microscopy (SEM) method to reveal changes occurred after the cycle of heatingcooling. The results revealed that relative strength of the concrete specimens decreased as the exposure temperature increased and reaches about a quarter of its initial strength at 900°C. Moreover SEM examinations showed that, increasing temperature caused weakening of the adherence of aggregate and cement matrix by the appearance of cracks and micro cracks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.