Abstract

We evaluated the effects of elevated carbon dioxide concentration ([CO2]) and two nutrient regimes on stem growth rate, annual ring structure and temporal variations in photosynthetic characteristics of seedlings of Japanese larch (Larix kaempferi (Lamb.) Carr.). Seedlings were grown in phytotron chambers in an ambient (360 ppm) or an elevated (720 ppm) [CO2] in two nutrient regimes for one growing season. Elevated [CO2] reduced stem height and increased stem basal diameter compared with ambient [CO2]. The effect of elevated [CO2] on growth tended to be greater at high-nutrient supply than at low-nutrient supply. Elevated [CO2] had no significant effect on ring width or the number of tracheids per radial file. There was no obvious difference in cell wall thickness or the relative area of the cell wall between seedlings grown in ambient or elevated [CO2]. Although growth in elevated [CO2] resulted in a slight increase in cell diameter, the increase had a relatively minor effect on the relative area of the cell wall. Net assimilation rate increased in response to elevated [CO2]; however, the increase in whole-crown photosynthetic rate (Total Agrowth) in seedlings in the elevated [CO2] treatment was minimal because of the smaller specific needle area and acclimation of the photosynthetic characteristics of the needles to the growth [CO2]. In conclusion, we observed no obvious enhancement in the capacity for carbon fixation in Japanese larch seedlings grown in the presence of elevated [CO2] that might be attributable to changes in stem growth. However, elevated [CO2] caused changes in the temporal pattern of stem growth and in some anatomical features of the tracheids.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.