Abstract

We investigated the direct and indirect effects of elevated atmospheric CO(2) on freshwater container habitats and their larval mosquito occupants. We predicted that a doubling of atmospheric CO(2) would (1) alter the chemical properties of water in this system, (2) slow degradation of leaf litter, and (3) decrease larval growth of Aedes albopictus (Skuse) mosquitoes raised on that litter under competitive conditions. Effects of elevated CO(2) on water quality parameters were not detected, but the presence of leaf litter significantly reduced pH and dissolved oxygen relative to water-filled containers without litter. Degradation rates of oak leaf litter from plants grown under elevated CO(2) atmospheres did not differ from breakdown rates of litter from ambient CO(2) conditions. Litter from plants grown in an elevated CO(2) atmospheres did not influence mosquito population growth, but mosquito production decreased significantly with increasing larval density. Differences among mosquito density treatments influenced survivorship most strongly among male Ae. albopictus and time to emergence most strongly among females, suggesting fundamental sex-determined differences in response to competition. Results of this and other studies indicate that direct and indirect effects of doubled atmospheric CO(2) are minimal in artificial containers with freshwater.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call