Abstract

AbstractThe effect of electrostatic and hydrophobic interactions on the chromatographic behavior of biopolymers with the use of chemically bonded silica‐based HPLC columns and aqueous buffered mobile phases containing neutral salts in a wide range of concentration is discussed. Two columns packed with stationary phases appositely designed for biopolymer HPLC in size exclusion and anion exchange mode, respectively, are examined. Experimental data are evaluated by plotting the measured isocratic elution volumes of several standard proteins of different isoelectric point against the salt concentration in the mobile phase. Depending on the concentration and nature of salt, both columns exhibit different domains where either sieving effect or electrostatic or hydrophobic interactions are predominant. At sufficiently low salt concentrations electrostatic interactions are predominant leading to either increasing or decreasing elution volumes depending on the sign of the charges on the stationary phase and the protein, respectively. On the other hand, at high salt concentrations of a salt with sufficiently high molal surface tension increment proteins may be retained by hydrophobic interactions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.