Abstract
Electrophoretic deposition (EPD) was used to deposit carboxylic acid-functionalized carbon nanofibers (O-CNFs) on the surface of single carbon fibers. Using the single fiber fragmentation technique and Weibull analysis, interfacial shear strength (IFSS) was estimated for different fiber surface treatments. Samples for sized, unsized, O-CNF deposited sized, and O-CNF deposited unsized carbon fibers were tested. Additionally, the effects of EPD were investigated by testing sized and unsized carbon fiber samples exposed to an electric field in water. Removal of the fiber sizing decreased IFSS by approximately 27%, but addition of O-CNFs to the unsized fiber surface led to an increase of 15% compared to the sized base fiber. The O-CNF deposited sized fibers provided IFSS increases of 207.6% and 66.9% for 1 and 5 min deposition durations, respectively. The surface morphology of all samples was characterized, and those containing homogeneous deposition of closely bound O-CNFs provided the highest IFSS values. Exposing sized fibers to the electric field for 1 min led to an IFSS increase of 79%, while unsized fibers undergoing the same treatment provided increases of 7.7% and 46% compared to the base sized fiber and unsized fiber samples, respectively.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have