Abstract

Abstract The effect of electronic-state modulation on the high frequency response of GaAs quantum well with thin inserted barrier layer is studied. The carrier scattering by polar optic phonons, acoustic deformation potential and background ionized impurities are incorporated in the present calculations considering the carrier distribution to be heated drifted Fermi–Dirac distribution. Modified phonon spectra and modulated electron wave function give different values of form factor compared to bulk mode phonon. Mobility is found to be enhanced on insertion of thin layer inside the quantum well. The ac mobility and the phase lag increases with the increase in both the channel width and the 2D carrier concentration. Cutoff frequency, where ac mobility drops down to 0.707 of its low frequency value, is observed to be enhanced reflecting better high frequency response.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call