Abstract

The influence of the direct and exchange Coulomb interaction on Landau level formation in strain-induced quantum dots (QD) has been studied by high-field (45 T) magneto-luminescence and by many-electron–many-hole Hartree–Fock calculations. The Darwin–Fock states of the dots are found to merge into a single Landau level at very high fields with a considerable reduction in the total diamagnetic shift due to the enhanced electron–hole correlation caused by the increased degeneracy of the state. We calculate a 50% reduction of the diamagnetic shift as a result of direct and exchange Coulomb interaction in the squeezed carrier states, in excellent agreement with the experimental findings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.