Abstract
High-energy electron-beam irradiation of indium gallium zinc oxide (IGZO) films improved the short-range arrangement. The increase in band gap was used as an indication of such improvement. X-ray diffraction confirmed that the films treated with a DC voltage of 2–4.5 kV for duration of up to 35 min are in the amorphous state or nanocrystalline phase. Higher energy electron-beam irradiation led to increased conductivity, which mainly comes from the drastic increase in electron concentration. Electron-beam treatment could be a viable route to improve the contact resistance between the source/drain and channel layer in thin-film transistor devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.