Abstract

BackgroundElectromechanical reshaping is a novel, minimally invasive means to induce mechanical changes in connective tissues, and has the potential to be utilized in lieu of current orthopedic therapies that involve tendons and ligaments. Electromechanical reshaping delivers an electrical current to tissues while under mechanical deformation, causing in situ redox changes that produce reliably controlled and spatially limited mechanical and structural changes. In this study, we examine the feasibility of altering Young's modulus and inducing a shape deformation using an ex vivo bovine Achilles tendon model. MethodsTendon was mechanically deformed in two different modes: (1) elongation to assess for tensile modulus and (2) compression to assess for compressive modulus. Electromechanical reshaping was applied to tendon specimens via flat plate platinum electrodes (6 V, 3 min) while simultaneously under mechanical strain for 15 min. FindingsIn elongation mode, post-electromechanical reshaping samples demonstrated a significant decrease in Young's modulus compared to pretreatment samples (66.02 and 45.12 MPa, respectively, p < 0.0049). In compression mode, posttreatment samples illustrated a significant shape change, with an increase in diameter (10.62 to 11.36 mm, p < 0.05) and decrease in thickness (4.13 to 3.62 mm, p < 0.05). InterpretationResults demonstrated a tissue softening effect without lengthening deformation during elongation, and a shortening effect without compromising compressive stiffness during compression. Electromechanical reshaping's reliable, low-cost, and efficacious methodology in inducing mechanical and structural connective tissue modifications illustrates a potential for future alternative orthopedic applications. Future studies will optimize and refine electromechanical reshaping to address clinically relevant geometries and methods such as needle techniques.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call