Abstract

The effects of electrical stimulation of the dorsal skin area on the mesenteric arterioles were investigated in anesthetized rats by the use of an intravital microscope-television system. Changes in the diameter of the mesenteric precapillary arterioles (10-40 microm in diameter) were measured with an image processor. Blood flow velocity in the mesenteric precapillary arterioles was monitored by the dual sensor method developed by the authors. Electrical stimulation was performed through two platinum electrodes placed at the right dorsal Th5-12 level skin area by the use of an electrical stimulator (0.2 ms, 20 Hz). Continuous stimulation lasting for 30 s (1-10 mA) and intermittent stimulation lasting for 10 min (3 mA) were applied. The pressor response following the depressor response was induced by a stimulus current above 8 mA. The decrease in mesenteric blood flow velocity was induced by stimulus current above 10 mA. These responses were abolished by lidocaine injection into the subcutaneous area where the electrodes were attached. No significant change in arteriolar diameter or heart rate were induced by the stimulation for 30 s. Electrical stimulation of the skin for 10 min evoked a decrease in the diameter of arterioles (-3.4 +/- 2%, p < 0.01, n = 12). In the adrenalectomized group, electrical stimulation of the skin for 10 min elicited a slight increase in the diameter (1.1 +/- 0.5%, n = 6). It is therefore suggested that electrical stimulation of the skin for 30 s reflexly evoked decreases in MAP and in blood flow velocity, and that the constriction of the mesenteric precapillary arterioles induced by the stimulation for 10 min was mediated by humoral adrenaline and noradrenaline released by somato-adrenal medullary reflex.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.