Abstract

The effects of effusion and film cooling momenta on combustor flow fields are investigated. Steady, compressible three-dimensional (3D) simulations are performed on a single-swirler combustor using Reynolds-averaged Navier–Stokes (RANS) with flamelet generated manifold and Lagrangian–Eulerian multiphase spray, while accounting for dome and liner cooling. Two simulations are performed on the same mesh. One simulation is conducted using a parallelized, automated, predictive, imprint cooling (PAPRICO) model with dynamic flux boundary conditions and downstream pressure probing (DFBC-DPP). PAPRICO involves removing the cooling jet geometry from the dome and liner while retaining the cooling hole imprints. The PAPRICO model does not require a priori knowledge of the cooling flow rates through various combustor liner regions nor specific mesh partitioning. The other simulation is conducted using the homogenously patched cooling (HPC) model, which involves removing all the cooling jets. The HPC model applies volumetric sources adjacent to the combustor wall regions where cooling jets are present. The momentum source, however, becomes negligible. The HPC model is not predictive and requires tedious ex situ mass flow measurements from an auxiliary flowbench experiment, afflicted with systematic errors. Hence, the actual in situ air flow splits through the several combustor regions is not known with absolute certainty. The numerical results are compared with measurements of mass flow rates, static pressure drops, and path-integrated temperatures. The results demonstrate that it is critical to account for the discrete dome and liner cooling momentum to better emulate the reacting flow in a combustor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call