Abstract

Attenuation of locomotor function is common in many species of animals as they age. Dysfunctions may emerge from a constellation of age-related impairments, including increased joint stiffness, reduced ability to repair muscle tissue, and decreasing fine motor control capabilities. Any or all of these factors may contribute to gait abnormalities and substantially limit an animal's speed and mobility. In this study we examined the effects of aging on whole-animal locomotor performance and hindlimb muscle mechanics in young adult rats aged 6-8 months and 'early aged' 24-month-old rats (Rattus norvegicus, Fischer 344 × Brown Norway crosses). Analyses of gaits and kinematics demonstrated that aged rats moved significantly more slowly, sustained longer hindlimb support durations, moved with a greater proportion of asymmetrical gaits, were more plantigrade, and moved with a more kyphotic spinal posture than the young rats. Additionally, the external mechanical energy profiles of the aged animals were variable across trials, whereas the younger rats moved predominantly with bouncing mechanics. In situ analyses of the ankle extensor/plantar flexor muscle group (soleus, plantaris, and medial and lateral gastrocnemii) revealed reduced maximum force generation with aging, despite minimal changes in muscle mass. The weakened muscles were implicated in the degradation of hindfoot posture, as well as variability in center-of-mass mechanics. These results demonstrate that the early stages of aging have consequences for whole-body performance, even before age-related loss of muscle mass begins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.