Abstract

Titanium carbide coatings are deposited on hot-work steel (H11) by plasma-assisted chemical vapor deposition (PACVD) and the dependence of the corrosion behavior on fabrication parameters is investigated. Grazing incidence X-ray diffraction (GIXRD), field emission scanning electron microscopy (FESEM), Raman and electrochemical tests are used to study the structure as well as corrosion behaviors. Grazing incidence X-ray diffraction reveals the (200) plane implying that the TiC coatings are deposited via the kinetics-limited crystal growth mechanism and under thermodynamically stable conditions. The SEM results indicate that the formation of a homogeneous and uniform titanium carbide nanostructure coatings. Potentiodynamic and electrochemical impedance tests performed in 0.5M H2SO4 and 0.05M NaCl show that the TiC coating produced using a 40% duty cycle possesses high corrosion resistance in both media. The Rp values of the TiC coating (50% duty cycle) in 0.05M NaCl and the other TiC coating (40% duty cycle) in 0.5M H2SO4 are approximately four and sixteen orders of magnitude higher than that of the bare steel, respectively. Our results reveal that the duty cycles not only affect the structure and morphology of the coatings but also influence the electrochemical properties.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.