Abstract

Dredging wastewater (DW) from aquaculture ponds is a major disturbance factor in mangrove management, and its effects on the greenhouse gas (GHG) fluxes from mangrove sediment remain controversial. In this study, we investigated GHG (N2O, CH4, and CO2) fluxes from mangrove sediment at typical aquaculture pond–mangrove sites that were stimulated by DW discharged for different input histories and from different farm types. The GHG fluxes exhibited differing cumulative effects with increasing periods of DW input. The N2O and CH4 fluxes from mangrove sediment that received DW inputs for 17 y increased by ∼10 and ∼1.5 times, respectively, whereas the CO2 flux from mangrove sediment that received DW inputs for 11 y increased by ∼1 time. The effect of DW from shrimp ponds on the N2O flux was significantly larger than those of DW from fish/crab ponds and razor clam ponds. Moreover, the total global warming potentials (GWPs) at the field sites with DW inputs increased by 29–129% of which the CO2 flux was the main contributor to the GWP (85–96%). N2O as a proportion of CO2-equivalent flux increased from 2% to 12%, indicating that N2O was an important contributor to the increase in GWP. Overall, DW increased the GHG fluxes from mangrove sediments, indicating that the contribution of mangroves to climate warming was enhanced under DW input. It also implies that the carbon sequestration potential of mangrove sediments may be threatened to some extent. Therefore, future assessments of the carbon sequestration capacity of mangroves at regional or global scales should consider this phenomenon.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call