Abstract

To understand the electronic conduction mechanism in Sn-doped indium oxide thin films, it is important to study the effect of dopant atoms on the neighbouring indium oxide lattice. Ideally Sn is a substitutional dopant at random indium sites. The difference in valence (Sn4+ replaces In3+) requires that an extra electron is donated to the lattice and thus contributes to the free carrier density. But since Sn is an adjacent member of the same row in the periodic table, the difference in the ionic radius (In3+: 0.218 nm; Sn4+: 0.205 nm) will introduce a strain in the indium oxide lattice. Free carrier electron waves will no longer see a perfect periodic lattice and will be scattered, resulting in the reduction of free carrier mobility, which will lower the electrical conductivity (an undesirable effect in most applications).One of the main objectives of the present investigation is to understand the effects of the strain (produced by difference in the ionic radius) on the microstructure of the indium oxide lattice when the doping level is increased to give high carrier densities. Sn-doped indium oxide thin films were prepared with four different concentrations: 9, 10, 11 and 12 mol. % of SnO2 in the starting material. All the samples were prepared at an oxygen partial pressure of 0.067 Pa and a substrate temperature of 250°C using an Edwards 306 coating unit with an electron gun attachment for heating the crucible. These deposition conditions have been found to give optimum electrical properties in Sn-doped indium oxide films. A JEOL 2000EX transmission electron microscope was used to investigate the specimen microstructure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.