Abstract

Thin sheets of poly (ethylene terephthalate) were stretched biaxially over a wide range to temperatures below the melting point of the polymer. The linear shrinkage occurring at temperatures between 85 and 100 °C decreased with increasing draw temperature and draw ratio. Specimens taken near the edges of the drawn sheets, which had been subjected to in-plane shear deformations, were found to exhibit linear shrinkage 5–8 times lower than those taken from the middle of the sheet. Subsequent experiments, using purpose-built clamps to achieve a more uniform state of shear in both directions of the biaxially drawn samples, confirmed the universality of the principle of shrinkage suppression by the superposition of shear deformations. X-ray diffraction studies revealed that the phenomenon was not related to differences in type of orientation of the crystals. The information from the X-ray diffraction studies and data from thermal analysis have led to the conclusion that the enhanced dimensional stability of biaxially drawn sheets subjected to superimposed shear deformations results from a combination of a higher rate of stress-induced crystallization and a reduction in the level of orientation within the amorphous phase.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.