Abstract

The structure, mechanical properties, and thermomechanical properties of poly(ethylene terephthalate) (PET) fibers obtained by laser-heated drawing were investigated in terms of their dependence on the draw ratio and feed speed and the differences between neck-drawn fibers and flow-drawn fibers. The long period at a draw ratio of 6.0 reached 19.0 nm, notably larger than at lower ratios, whereas the tilting angle of the laminar structure was constant at about 60°, regardless of the draw ratio. A maximum value of 15.0 GPa was attained for the initial modulus, and 1.07 GPa was attained for the tensile strength. A higher tensile strength orientation-induced crystallized fiber at the same initial modulus was obtained from higher molecular weight PET. The relationship between the compliance and molecular orientation of the amorphous phase was studied with a series model of crystalline and amorphous phases. The results revealed that, in the high-draw-ratio fibers, the compliance of the amorphous phase decreased with the draw ratio at a higher rate than indicated by extrapolation to intrinsic values. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 79–90, 2004

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.