Abstract

BackgroundRootstocks can improve the chilling tolerance of grafted cucumbers, but their effectiveness varies. Rootstocks with strong de-blooming capacity may result in lower chilling tolerance of grafted cucumbers compared to those with weak de-blooming capacity, while also reducing the silicon absorption. However, it remains unclear whether this reduction in chilling tolerance is due to differences in rootstock genotypes or the reduction in silicon absorption.ResultsThe chilling tolerance of cucumber seedlings was improved by using rootstocks and silicon nutrition. Rootstocks had a more significant effect than silicon nutrition, and the weak de-blooming rootstock ‘Yunnan figleaf gourd’ was superior to the strong de-blooming rootstock ‘Huangchenggen No. 2’. Compared to self-rooted cucumber, twelve miRNAs were regulated by two rootstocks, including seven identical miRNAs (novel-mir23, novel-mir26, novel-mir30, novel-mir37, novel-mir46, miR395a and miR398a-3p) and five different miRNAs (novel-mir32, novel-mir38, novel-mir65, novel-mir78 and miR397a). Notably, four of these miRNAs (novel-mir38, novel-mir65, novel-mir78 and miR397a) were only identified in ‘Yunnan figleaf gourd’-grafted cucumbers. Furthermore, six miRNAs (miR168a-5p, miR390a-5p, novel-mir26, novel-mir55, novel-mir67 and novel-mir70) were found to be responsive to exogenous silicon. Target gene prediction for 20 miRNAs resulted in 520 genes. Functional analysis of these target genes showed that ‘Yunnan figleaf gourd’ improves the chilling tolerance of cucumber by regulating laccase synthesis and sulfate metabolism, while ‘Huangchenggen No. 2’ and exogenous silicon reduced chilling stress damage to cucumber by regulating ROS scavenging and protein protection, respectively.ConclusionAmong the identified miRNAs, novel-mir46 and miR398a-3p were found in cucumbers in response to chilling stress and two types of rootstocks. However, no identical miRNAs were identified in response to chilling stress and silicon. In addition, the differential expression of novel-mir38, novel-mir65, novel-mir78 and miR397a may be one of the important reasons for the differences in chilling tolerance of grafted cucumbers caused by two types of rootstocks.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call