Abstract

Spider silk is a biomaterial with impressive mechanical properties, resulting in various potential applications. Recent research has focused on producing synthetic spider silk fibers with the same mechanical properties as the native fibers. For this study, three proteins based on the Argiope aurantia Major ampullate Spidroin 2 consensus repeat sequence were expressed, purified and spun into fibers. A number of post-spin draw conditions were tested to determine the effect of each condition on the mechanical properties of the fiber. In all cases, post-spin stretching improved the mechanical properties of the fibers. Aqueous isopropanol was the most effective solution for increasing extensibility, while other solutions worked best for each fiber type for increasing tensile strength. The strain values of the stretched fibers correlated with the length of the proline-rich protein sequence. Structural analysis, including X-ray diffraction and Raman spectroscopy, showed surprisingly little change in the initial as-spun fibers compared with the post-spin stretched fibers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.