Abstract

To get an optimal mode of irrigation and nitrogen supply for table grape production in North China, a pot experiment was conducted to investigate the effects of different irrigation modes and N application rates on dry matter accumulation and distribution, yield, water use efficiency, and nitrogen use efficiency of table grape. The irrigation modes included conventional drip irrigation (CDI, with sufficient irrigation), alternate partial root-zone drip irrigation (ADI, with 50% amount of the irrigation water of CDI) and fixed partial root-zone drip irrigation (FDI, with 50% amount of the irrigation water of CDI). The nitrogen application rates were set at 0.4 (N1), 0.8 (N2) and 1.2 (N3) g·kg-1 dry soil. The results showed that compared with CDI, ADI and FDI reduced new shoot pruning amount by 34.8% and 11.2%, respectively. New shoot pruning amount increased with increasing N application rates, being highest under CDIN3. Dry matter accumulation of ADI was the highest, being 5.1% and 12.8% higher than CDI and FDI. Dry matter accumulation was higher under N2 and N3 than N1. Compared with CDI and FDI, leaf to fruit ratio reduced but harvest index significantly increased in ADI, while those variables showed no significant difference among diffe-rent N application rates. The ratio of pruning amount to the biomass accumulated in the current year in ADIN2 was the lowest among the treatments. Compared with CDI and FDI, ADI increased grape fruit yield by 6.0% and 10.4%, respectively. Fruit yield was enhanced with increasing nitrogen application rates under the same irrigation condition, with the highest yield under the ADIN2 and ADIN3. Water use efficiency (WUE) increased significantly in ADI compared with CDI and FDI, with the highest value being observed in ADI coupled with N2 or N3. Nitrogen use efficiency (NUE) showed a trend of ADI>CDI>FDI. In addition, NUE decreased with increasing nitrogen supply level across the irrigation modes. In conclusion, ADIN2 could reduce the redundant growth of grape tree, promote the transfer of dry matter to fruit, which increased yield and use efficiency of both water and nitrogen, which is a suitable coupling water and nitrogen supply mode for grape production in northern China.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.