Abstract
The contents and kinds of oxygen-containing functional groups are very significant when preparing cationic hydrochar coagulants via graft copolymerization. Herein, the hydrothermal conditions to produce sludge-based hydrochar (SBC) precursors were optimized by introducing different kinds and amounts of modifying agents (i.e., HCOOH, citric acid (CA), H2SO4, and H2O2), then the surface properties and flocculation performance of derived cationic coagulants (SBC-g-DMC) were studied. Results showed that the utilization of four modifiers raised the acidic groups on the SBC surface; thereinto, the presence of CA could evidently increase the content of phenolic hydroxyl groups. After DMC monomer grafting, the formed coagulants possess positive zeta potentials over a wide pH range (i.e., 3.0 ~ 11.0), showing a typical cationic property. The grafting ratio and efficiency, as well as the cationic degree of coagulants prepared with different SBC precursors follow a descending order of SBCCA-g-DMC > [Formula: see text]-g-DMC > SBCHCOOH-g-DMC > [Formula: see text]-g-DMC; thus, SBCCA-g-DMC coagulant with the best grafting result shows a superior flocculation performance. When a dosage of 4mg/L was adopted, the average turbidity removal rate of SBCCA-g-DMC could reach up to 94.44%. Meanwhile, due to the possible and robust oxidation with the initiator, H2O2 seems not a perfect modifier for SBC preparation. This study could provide an essential reference for the optimal synthesis of SBC and its based coagulants for organic matter recovery and pollutant removal.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have