Abstract

Previous studies from this laboratory have utilized latex beads as probes of embryonic migratory pathways. After microinjection into embryos at the time of neural crest migration, uncoated latex polystyrene beads were found to translocate to ventral sites and to settle in the vicinity of endogenous neural crest derivatives. However, latex beads coated with fibronectin did not translocate ventrally, but remained associated with cells surrounding the implantation site. Fibronectin is a large glycoprotein with a variety of biological activities and multiple binding domains. Here, the binding activities which might be responsible for immobilization of the fibronectin-coated beads are examined. Latex beads were coated with three types of fragments of the fibronectin molecule representing different functional domains: (i) a 66-kDa fragment containing collagen-binding activity; (ii) a mixture of 45- and 32-kDa fragments containing heparin-binding activity; and (iii) a 120-kDa fragment containing cell-binding activity. The beads coated with fibronectin fragments were injected into the newly formed trunk somites of avian embryos. After injection, beads coated with either the heparin- or the collagen-binding domain translocated ventrally and distributed analogously to uncoated latex beads. In contrast, the majority of beads coated with the fibronectin cell-binding domain did not translocate but remained associated with dermamyotomal cells surrounding the injection site. The cell-binding fragment, however, was not as effective as the intact fibronectin molecule in preventing translocation of the beads. The results suggest that the cell-binding domain is primarily responsible for restriction of fibronectin beads from the ventral neural crest pathway. Because intact fibronectin is more effective at immobilizing beads than is the cell-binding fragment, other binding domains of fibronectin, more efficient coating with intact fibronectin, or crosslinking of intact fibronectin molecules may also play some role in immobilization of the beads at the implantation site.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.