Abstract
Deinked pulp fibers produced by three kinds of deinking processes, alkaline deinking, neutral deinking, and enzymatic deinking, were studied by Scanning Electron Microscope (SEM), Fourier Transform Infrared Spectrometer (FTIR), X-ray Diffraction (XRD), and Cross-Polarization Magic Angle Spinning Carbon-13 Nuclear Magnetic Resonance (CP/MAS 13C-NMR). There were remarkable differences in both macroscopic and microscopic structure between the samples. SEM images showed that the effects of deinking processes on fiber morphology were obvious and the influences of alkaline deinking were the most apparent. FTIR analysis indicated that the content of intermolecular hydrogen bonds increased by 22.63%, 9.42%, and 14.40% after the alkaline deinking process, neutral deinking process, and enzymatic deinking process, respectively. XRD revealed that the average width of crystallite size in the (002) lattice plane was decreased after different deinking processes, in accordance with the change tendency of cellulose crystallinity. CP/MAS 13C NMR combined with spectral fitting demonstrated that the content of different cellulose polymorphs changed during deinking processes. The increase of WRV was attributed to changes in the hydrogen bonding patterns and cellulose supramolecular structure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.