Abstract

Abstract Observational analysis indicates that the East Asian jet stream consists of two separate branches: the East Asian subtropical jet (EASJ) and the East Asian polar front jet (EAPJ). The impacts of different intensity configurations of the EASJ and EAPJ on precipitation during the mei-yu season are investigated using the NCEP–NCAR Reanalysis Project (NNRP) dataset and daily gauge observations in East China. The intensity and location of precipitation are associated with different configurations of the EASJ and EAPJ. Precipitation intensity increases with intensification of the EASJ and EAPJ. The rainband is located to the north of the mei-yu region when the EASJ intensifies and the EAPJ weakens. Further analyses indicate that the intensity changes of the EASJ and EAPJ are linked to the cold and warm airmass activities. For cases with strong EASJ and EAPJ, both the warm-moist and cold air masses are active. When the warm-moist and cold air masses meet near 30°N, abundant precipitation occurs in the Yangtze-Huai River basin (YHRB). For cases with weak EASJ and EAPJ, both the cold and warm-moist air masses are inactive, and no significant precipitation occurs in the YHRB. For cases with strong EASJ and weak EAPJ, the warm-moist air mass moves northward while the cold air mass is weak. Precipitation concentrates to the north of YHRB. For cases with weak EASJ and strong EAPJ, cold air extends farther south while the warm-moist air mass is inactive. Precipitation occurs to the south of YHRB.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call