Abstract

Simple SummaryThe prospective ban on zinc oxide in pig feed in Europe is a major challenge facing the swine industry to maintain piglet health and performance during the weaning period. Weaning is a particularly difficult period for the young pig that is associated with abrupt dietary, environmental and social changes that cause significant levels of stress and disrupt gut development in the pig. Mushrooms are a rich natural source of bio-actives and have long been regarded as a health-promoting food due to their immunomodulatory and antioxidant effects and their ability to modulate the gut microbiota. Mushrooms contain high levels of ergosterol, which allows them to naturally produce vitamin D when they are exposed to light. The present study aimed to compare the effects of mushroom and vitamin D2-enriched mushroom powders to zinc oxide on the molecular, physiological and microbial changes that influence performance during the post-weaning period. Our study showed that vitamin D2-enriched mushrooms were equally as effective as zinc oxide in improving gastrointestinal health parameters. However, both mushroom powders reduced feed intake in pigs and negatively affected animal performance. For this reason, mushroom powders have limited use as a commercial feed additive in replacing zinc oxide in pig diets.The objective of this study was to compare the molecular, physiological and microbial effects of mushroom powder (MP), vitamin D2 enriched mushroom powder (MPD2) and zinc oxide (ZnO) in pigs post-weaning. Pigs (four pigs/pen; 12 pens/treatment) were assigned to: (1) basal diet (control), (2) basal diet + ZnO, (3) basal diet + MP (2 g/kg feed) and (4) basal diet + MPD2 (2 g/kg feed). Zinc oxide supplementation improved the feed intake (p < 0.001); increased the caecal abundance of Lactobacillus (p < 0.05); increased the villus height (p < 0.05) in the duodenum, jejunum and ileum; increased the expression of chemokine interleukin 8 (CXCL8; p < 0.05); and decreased the expression of pro-inflammatory cytokine gene interleukin 6 (IL6; p < 0.05), tumour necrosis factor (TNF; p < 0.05), nutrient transporters peptide transporter 1 (SLC15A1; p < 0.05) and fatty acid binding protein 2 (FABP2; (p < 0.05) in the duodenum. Whereas dietary supplementation with MPD2 improved the gastrointestinal morphology (p < 0.05); increased the total volatile fatty acid concentrations (p < 0.05); increased the expression of anti-inflammatory cytokine gene interleukin 10 (IL10; p < 0.05) and nutrient transporters SLC15A1 (p < 0.05), FABP2 (p < 0.05) and vitamin D receptor (VDR; p < 0.05); and reduced the expression of pro-inflammatory cytokine gene IL6 (p < 0.05), it adversely affected average daily feed intake (ADFI; p < 0.001) and average daily gain (ADG; p < 0.05). Mushroom powder supplementation had a positive impact on gastrointestinal morphology (p < 0.05) and upregulated the expression of nutrient transporters SLC15A1 (p < 0.05) and FABP2 (p < 0.05) and tight junction claudin 1 (CLDN1) (p < 0.05) compared to the controls but had no effect on the expression of inflammatory markers (p > 0.05). Furthermore, MP reduced ADFI (p < 0.01); however, this did not negatively impact the ADG (p > 0.05). In conclusion, MP and MPD2 have limited use as commercial feed additives in replacing ZnO in pig diets as feed intake was reduced post-weaning.

Highlights

  • Pharmacological doses (2000–3100 mg/kg feed) of zinc oxide (ZnO) are often included in the post-weaning pig diet to alleviate the negative impacts of weaning on pig performance [1] and gastrointestinal health [2,3,4]

  • Our study showed that vitamin D2-enriched mushrooms were as effective as zinc oxide in improving gastrointestinal health parameters

  • The observed improvement in gastrointestinal health enhanced the digestive and absorptive capacity of the gastrointestinal epithelium resulting in an upregulation of nutrient transporters in the duodenum. These results indicate that mushroom powder (MP) and MPD2 supplementation has the potential to support gastrointestinal health through the improvement of small intestinal architecture in the post-weaning period

Read more

Summary

Introduction

Pharmacological doses (2000–3100 mg/kg feed) of zinc oxide (ZnO) are often included in the post-weaning pig diet to alleviate the negative impacts of weaning on pig performance [1] and gastrointestinal health [2,3,4]. Common protocols employed on commercial farms include feeding 3100 mg/kg ZnO for 2 weeks post-weaning, followed by 1550 mg/kg for 3 additional weeks. The European Union (EU) have begun the phasing out of pharmacological doses of ZnO alongside further restrictions on the use of infeed medication in weaner pig diets by 2022 (Commission Implementing Decision of 26 June 2017, C(2017) 4529 Final) (Regulation (EU) June 2019). There is increasing pressure in identifying natural bioactive compounds that may effectively reduce gastrointestinal inflammation and dysbiosis similar to that of ZnO whilst maintaining profitability and animal performance. Two bioactives of interest are β-glucans and Vitamin D, due to their well-recognized immunomodulatory properties

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.