Abstract
The purpose of the present study was to explore the impaired anti-bacteria ability in immune organs and immune systems of obscure puffer induced by chronic dietary phosphorus (P) deficiency. Fish were fed diets supplemented with 6g/kg P (P6) and 0g/kg P (P0) respectively for 15 weeks, and lower final body weight, feed intake, weight gain, whole body P content and bone P content were observed in fish fed P0 diet (P<0.05). Then the fish were continued to feed for 3 weeks and intraperitoneal injection with PBS (P6+PBS) and Aeromonas hydrophila (A.hydrophila) (P6+A.hydrophila and P0+A.hydrophila), and sampled at 3, 6, 12 and 24h. The results showed that dietary P deficiency lowered survival rate, total hemocyte count, whereas enhanced ROS production and apoptosis rate of obscure puffer compared to the 6g/kg P supplemented group after infection. Moreover, compared to the P sufficient group, puffer fish fed P deficient diet decreased the expressions of antioxidant genes catalase (cat) and glutathione reductase (gr), immune-related genes toll-like receptor 2 (tlr-2) and anti-inflammatory factors transforming growth factor β1 (tgf-β1) and interleukin 11 (il-11) while increased pro-inflammatory cytokines tumor necrosis factor α (tnf-α), interleukin 1β (il-1β) and interleukin 8 (il-8) in head kidney post-infection. In addition, dietary P deficiency decreased the hepatic gene expressions of anti-apoptotic factor B-cell lymphoma 2 (bcl-2) and bax-inhibitor 1 (bi-1), accompanied by increasing the mRNA expressions of pro-apoptotic factor caspase 3, caspase 8 and caspase 9 compared to the P sufficient group after A.hydrophila infection. In conclusion, dietary P deficiency impaired the anti-bacteria function of the immune system as well as immune organs by increasing oxidative stress and aggravating the inflammatory response and apoptosis in obscure puffer under the A.hydrophila challenge.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have