Abstract

Ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) are crucial for N2O emission as they carry out the key step of nitrification. Dicyandiamide (DCD) and acetylene (C2H2) are typical nitrification inhibitors (NIs), while the comparative effects of these NIs on N2O production and ammonia oxidizers' (AOB and AOA) growth are unclear. Four treatments including a control, urea, urea + DCD, and urea + C2H2 were set up to investigate their effect of inhibiting soil nitrification, nitrification-related N2O emission as well as the growth of ammonia oxidizers with a fluvo-aquic soil using microcosms for 28days. N2O emission and net nitrification rate increased after the application of urea, but were significantly restrained in urea+NI treatments, while C2H2 was more effective in reducing N2O emission and nitrification rate than DCD. The abundance of AOB, which was significantly correlated with N2O emission and net nitrification rate, was more inhibited by C2H2 than DCD. Furthermore, the application of urea in all the soils had little impact on the AOA community, while obvious shifts of AOB community structure were found compared with the control. All AOB sequences fell within Nitrosospira cluster 3, and the AOA community was clustered to group 1.1b. Collectively, it indicated that application of urea combined with NIs (DCD or C2H2) could potentially alter N2O emission, mainly through regulating the growth of AOB but not AOA in this fluvo-aquic soil.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.