Abstract
The large decreases in hepatic glycogen associated with alloxan diabetes in fed rats were accompanied by apparent decreases in total activities of glycogen synthase, phosphorylase, protein kinase and synthase phosphatase determined on 8000 × g supernatants of liver homogenates. Inclusion of 4% glycogen in the extraction buffer normalized total soluble activities of synthase in the diabetic. Whereas inclusion of 4% glycogen in the extraction buffer doubled total soluble phosphorylase, total activity remained lower in the diabetic than in the normal. Extraction and assay of soluble protein kinase were unaffected by added glycogen. When activities were determined on whole homogenates, total glycogen synthase activities were the same in normal and diabetic liver. Although the decreases in total activities of phosphorylase, kinase and phosphatase were less when determined on whole homogenates of livers from diabetic rats, the diabetes-related decreases in total activities remained significant. Therefore, it appears that while alloxan diabetes results in absolute decreases in total hepatic activities of phosphorylase, kinase and phosphatase, it may also result in redistribution of hepatic synthase and phosphorylase between soluble and particulate fractions, a phenomenon possibly related to tissue glycogen concentrations. Such a redistribution might be involved in the lack of control of hepatic glycogenesis observed in alloxan diabetic rats.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have