Abstract

We present recent results toward the quantification of spray characteristics at engine conditions for an eight-hole counter-bored (stepped) GDI injector – Spray G in the ECN denomination. This computational study is characterized by two novel features: the detailed description of a real injector's internal surfaces via tomographic reconstruction; and a general equation of state that represents the thermodynamic properties of homogeneous liquid-vapor mixtures. The combined level-set moment-of-fluid approach, coupled to an embedded boundary formulation for moving solid walls, makes it possible to seamlessly connect the injector's internal flow to the spray. The Large Eddy Simulation (LES) discussed here presents evidence of partial hydraulic flipping and, during the closing transient, string cavitation. Results are validated by measurements of spray density profiles and droplet size distribution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.