Abstract

Ethnopharmacological relevanceDanhong injection (DHI) is a Chinese medical injection applied to the clinical treatment of cardiovascular diseases that has anti-inflammatory, antiplatelet aggregation and antithrombotic effects. This study aimed to explore the effects of DHI on dyslipidemia and cholesterol metabolism in high-fat diet-fed rats. MethodsSprague Dawley (SD) rats were randomly divided into six groups: normal group (Normal); hyperlipidemia model group (Model); DHI-treated groups at doses of 1.0 mL/kg, 2.0 mL/kg, 4.0 mL/kg; and simvastatin positive control group (2.0 mg/kg). The hypolipidemic effects of DHI were evaluated by measuring serum lipid levels, hepatic function and oxidative stress, respectively. And pathological changes in liver tissues were determined using hematoxylin-eosin (H&E) and oil red O staining. Moreover, the mRNA and protein expression levels of cholesterol metabolism related genes were detected by real-time PCR (RT-PCR) and Western blot. ResultsCompared with the Model group, DHI treatment markedly decreased the liver index and improved the pathological morphology of liver tissues. DHI treatment dose-dependently decreased the levels of total cholesterol (TC), triglycerides (TG), low-density lipoprotein cholesterol (LDL-C), malondialdehyde (MDA), and free fatty acids (FFA) in serum or liver tissues (P < 0.01 or P < 0.05), and increased the high-density lipoprotein cholesterol (HDL-C) and tripeptide glutathione (GSH) (P < 0.01 or P < 0.05). The activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-PX) were increased in the DHI-treated groups (P < 0.01 or P < 0.05), while the alanine transaminase (ALT) and aspartate transaminase (AST) were decreased (P < 0.01 or P < 0.05). Furthermore, the expression levels of LDL receptor (LDLR), cholesterol 7-α-hydroxylase (CYP7A1), liver X receptor α (LXRα), and peroxisome proliferator-activated receptor α (PPARα) were dose-dependently upregulated in the DHI-treated groups, whereas the expression of sterol regulatory element-binding protein-2 (SREBP-2) was downregulated. ConclusionsOur study demonstrated that DHI markedly ameliorated hyperlipidemia rats by regulating serum lipid levels, inhibiting hepatic lipid accumulation and steatosis, improving hepatic dysfunction, and reducing oxidative stress. The potential mechanism was also tentatively investigated and may be related to the promotion of bile acid synthesis via activation of the PPARα-LXRα-CYP7A1 pathway. Therefore, DHI could be regarded as a potential hypolipidemic drug for the treatment of hyperlipidemia.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call