Abstract
0.6BiFeO3–0.4(Bi0.5K0.5)TiO3 (0.6BF–0.4BKT) ceramic samples with 0.0–4.0 mol% CuO were prepared by the solid‐state reaction. The CuO addition aided the densification of the samples and slightly increased the lattice constant. The relaxor‐like defuse dielectric peak of 0.6BF–0.4BKT became sharper with increasing the CuO content. Polarization–electric field curve of the undoped 0.6BF–0.4BKT was a pinched loop in the as‐sintered state, while that was a square hysteresis with a large remanent polarization of 48 μC/cm2 after the thermal quenching, demonstrating a strong domain wall pinning due to defect dipoles. We found that the CuO addition up to 2.0 mol% facilitates the polarization switching in the as‐sintered samples to increase the remanent polarization and the piezoelectric d33 coefficient. The results of the structural and electrical investigations suggested that the copper ion acts as a donor in 0.6BF–0.4BKT by compensating the potassium vacancy created by the evaporation of K2O during the calcination and sintering processes.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have