Abstract

The effect of a tramp element Cu on the hot workability of steels was investigated in this paper. The number of surface cracks occurring in the specimens which were tensile-deformed after oxidized was measured to assess the effect of small amounts of Cu (0.3 %) and Ni (0.15 %) on hot workability. The microstructure of a scale/steel interface was closely observed and the relationship between the surface cracking and the microstructure was established. For an 0.3 % Cu bearing steel, the surface hot cracking occurred only at 1100°C oxidation due to a liquid Cu enriched phase, i.e., 87%Cu-Fe, formed at the scale/steel interface. Both at 1000°C and at 1200°C oxidations, solid Cu enriched phases formed at the steel interface, which did not cause surface cracking. A liquid Cu enriched phase in a small amount was occluded into the scale at 1200°C. An addition of 0.15 % Ni suppressed the surface cracking of 0.3 % Cu bearing steel by eliminating all the Cu enriched liquid phases. At 1100°C oxidation, Ni addition enhanced the occlusion of a solid Cu enriched phase, i.e., 66%Cu-15%Ni-Fe, and left a solid phase, 16%Cu-16%Ni-Fe, at the scale/steel interface. At 1200°C oxidation, Ni addition also enhanced the occlusion of solid phases, 16%Cu-27%Ni-Fe and 10%Cu-10%Ni-Fe, and left a solid phase, 6%Cu-1%Ni-Fe at the interface. A mechanism of formation of various Cu-Ni enriched phases in 0.3%Cu-0.15%Ni bearing steel was discussed in terms of equilibrium diagrams and the difference in diffusion rate of Cu and Ni.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.