Abstract

The influence of crystal orientation (including [100], [110], and [111]) and diameter (ranging from 2 to 10 nm) on the tensile deformation behavior and mechanical properties of single-crystal spinel (MgAl2O4) nanowires is investigated using molecular dynamics simulations. Varied deformation characteristics and fracture modes are revealed when the tensile loading is applied in the differently oriented nanowires. Mechanical properties including elastic modulus and ultimate tensile strength of spinel nanowires are distinctly dependent on size in each crystal orientation. This study advances the understanding of spinel nanomechanics which can help the development of high-strength spinel materials and their potential nanodevice applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.