Abstract

Crop rotation and soil tillage are among key factors impacting cropping system productivity, pest management and soil health. To assess their role in northern cropping systems, we quantified the effects of crop rotation on spring wheat yield in different tillage systems based on a long-term (2005–2017) field experiment in southwestern Finland. In addition, effects of crop rotation on weeds, plant pathogens, and pest insects were assessed. Three types of crop rotation were compared: monoculture (spring wheat), 2-year rotation (spring wheat—turnip rape—spring wheat—barley) and 4-year rotation (spring wheat—turnip rape—barley—pea) under no-tillage and plowing. A diversified crop rotation improved spring wheat yield by up to 30% in no-tillage and by 13% under plowing compared with monoculture. Overall, the yield quantity and quality differences between crop rotations were higher in no-tillage plots than in plowed plots. The occurrence of weed species in spring wheat before herbicide control was highest in the four-year crop rotation and lowest in the wheat monoculture. For plant diseases, wheat leaf blotch disease severity, mainly caused by Pyrenophora tritici-repentis, was lowest in the most diverse crop rotation. On average, wheat leaf blotch disease severity was 20% less when wheat was grown every fourth year compared with wheat monoculture. The effect of crop rotation on stem and root diseases became apparent after 6 years of rotation and the disease index was lowest in the most diverse crop rotation. Neither rotation nor tillage affected the control need of wheat midge (Sitodiplosis mosellana). Based on our results, diverse crop rotations including cereals, oilseed crops, and legumes increase yield and reduce plant disease severity of spring wheat in Finland, with the magnitude being larger in no-tillage systems.

Highlights

  • Northern cropping systems represent mostly Boreal zone located agroecosystems characterized by high seasonal variation leading to a short, intense growing season, and somewhat restricted selection of crops to grow

  • The yield differences among the tested crop rotations were higher in the no-tillage than in the plowed treatments

  • The yield was lowest in wheat monoculture for all time periods except during Period 1 when no-tillage CR4 plots had the lowest yield

Read more

Summary

Introduction

Northern cropping systems represent mostly Boreal zone located agroecosystems characterized by high seasonal variation leading to a short, intense growing season, and somewhat restricted selection of crops to grow. Northern cropping systems with their already challenging production conditions are faced with increasing adaptation needs due to alterations in precipitation, temperature, and snow coverage along with the socioeconomic changes brought about by climate change (Peltonen-Sainio, 2012). This emphasizes the need to pay even more attention to the maintenance of healthy and viable soil that can sustain yielding under various biotic and abiotic crop stresses

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call