Abstract
Cu deficiency results in embryonic defects and yolk sac (YS) vasculature abnormalities. In diverse model systems, Cu treatment modulates angiogenesis, perhaps by influencing the activity of angiogenic mediators such as vascular endothelial growth factor (VEGF). Conversely, Cu chelators can suppress angiogenesis. Gestation day (GD) 8.5 embryos from mice fed Cu-adequate (Cu+) or Cu-deficient (Cu-) diets were cultured in Cu+ or Cu- medium for 48 hr. Growth and development were evaluated, and YS vessel diameters were measured. Using RT-PCR and immunohistochemistry, the mRNA and protein expressions of VEGF, Flt-1, Flk-1, Angiopoietin-1 (Ang-1), and Tie-2 were analyzed. Cu+/Cu+ embryos developed normally, whereas Cu-/Cu- embryos showed a high incidence of developmental anomalies. Cu-/Cu- YS had a high proportion of vessels that were large in diameter compared to the Cu+/Cu+ YS. The mRNA expression of angiogenic mediators in Cu-/Cu- YS was similar to that in Cu+/Cu+ YS. The protein expression of VEGF in the Cu-/Cu- YS without any vessel defects, and Tie-2 in the Cu-/Cu- YS with both vessel defects and blood islands was significantly lower than that in the Cu+/Cu+ YS. The protein expression of Flt-1, Flk-1 and Ang-1 was similar among groups regardless of the presence, or type, of vessel defects. Results from the current study support the concept that Cu is required for the normal development of YS vasculature. Our data suggest that the impaired vascularization of Cu-deficient YS cannot be explained fully by the altered protein expression of the angiogenic growth factors reported here.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Birth Defects Research Part B: Developmental and Reproductive Toxicology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.