Abstract

In the present investigation, thermomechanical controlled processing of a high carbon steel and a Nb microalloyed high carbon steel have been conducted in a Gleeble 3800 simulator. Different microscopic techniques have been utilised for the characterisation of the microstructure and hardness data has been used for the evaluation of mechanical properties. In order to suppress the transformation enthalpy, experiments are performed under varying cooling rate and strain rate. The effect of niobium microalloying leads to the lowering of recalescence and suppresses austenite to pearlite transformation start and finish temperatures at every cooling rate which leads to the refinement of interlamellar spacing and thereby improve hardness and predicted yield strength values. It is evident that a higher strain rate accelerates the kinetics of pearlite transformation and elevates the pearlite start temperature. The increase of strain rate in the range of 1s–1 to 100s–1 followed by a constant cooling rate (free cooling) leads to the refinement of interlamellar spacing as well as improves mechanical properties. The true stress-true strain diagram at a lower strain rate indicates higher strain hardening with sharp yield point, whereas the same at a higher strain rate indicates the sudden occurrence of strain softening. The variation in recalescence due to the alternation of the cooling rate and strain rate has been correlated with the final microstructure and mechanical properties.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.