Abstract

Currently new continuous casting processes such as thin slab caster or strip casting are industrialized or under developing in the world steel makers. In these casting processes, cooling rate after solidification becomes much faster compared with thick slab caster, and hot rolling mill connected directly with casting machine tends to be installed. The present study was conducted to investigate variations of austenitic grain size and micro segregation with cooling rate after solidification and also direct hot deformation conditions in austenite immediately after solidification in HSLA steels. HSLA steels were 0.15%C-0.25%Si-1.50%Mn, 0.028%Nb and 0.028%Nb-0.015%Ti with the same basic compositions. A hot working simulator of THERMECMASTER-Z was used, and the center part of tensile specimen set up in this machine was partially or fully levitation-melted by induction heating under argon gas atmosphere. After melting, specimens were cooled at cooling rate from 0.4K/s to 40K/s, and this range covered cooling rates after solidification in heavy thick slab caster and strip casting. Direct hot tensile straining in austenite after solidification was conducted at strain rates from 1.4×10-3s-1 to 2.6s-1, corresponding to an extracting speed in a respective caster. The increase of cooling rate refined continuously as cast austenitic grain size, and it was enhanced in micro alloyed steels. Micro segregation such as Mn was improved by faster cooling. Direct straining after solidification markedly refined austenitic grain size through dynamic or static recrystallization occurring depending on strain rate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.