Abstract
This study was conducted to assess the survival rates, growth, and chlorophyll fluorescence (Fv/Fm) of four hybrid aspen (14, 191, 27, 291) and two European aspen (R3 and R4) clones cultivated in creosote- and diesel oil-contaminated soil treatments under three different plant densities: one plant per pot (low density), two plants per pot (medium density), and six plants per pot (high density) over a period of two years and three months. Evaluating the survival, growth, and Fv/Fm values of different plants is a prerequisite for phytoremediation to remediate polluted soils for ecological restoration and soil health. The results revealed that contaminated soils affected all plants’ survival rates and growth. However, plants grown in the creosote-contaminated soil displayed a 99% survival rate, whereas plants cultivated in the diesel-contaminated soil showed a 22–59% survival rate. Low plant density resulted in a higher survival rate and growth than in the other two density treatments. In contrast, the medium- and high-density treatments did not affect the plant survival rate and growth to a greater extent, particularly in contaminated soil treatments. The effects of clonal variation on the survival rate, growth, and Fv/Fm values were evident in all treatments. The results suggested that hybrid aspen clones 14 and 291, and European aspen clone R3 were suitable candidates for the phytoremediation experiment, as they demonstrated reasonable survival rates, growth, and Fv/Fm values across all treatments. A superior survival rate for clone 291, height and diameter growth, and stem dry biomass production for clone 14 were observed in all soil treatments. Overall, a reasonable survival rate (~75%) and Fv/Fm value (>0.75) for all plants in all treatments, indicating European aspen and hybrid aspen have considerable potential for phytoremediation experiments. As the experiment was set up for a limited period, this study deserves further research to verify the growth potential of different hybrid aspen and European aspen clones in different soil and density treatment for the effective phytoremediation process to remediate the contaminated soil.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.