Abstract

Muscle pain can be associated with hyperalgesia that may spread outside the area of primary injury due to both peripheral and central sensitization. However, the influence of endogenous pain inhibition is yet unknown. This study investigated how endogenous pain inhibition might influence spreading hyperalgesia in experimental muscle pain. Conditioned pain modulation (CPM) was assessed in 30 male volunteers by cold pressor test at the non-dominant hand as conditioning and pressure pain thresholds (PPT) at the dominant 2nd toe as test stimuli. Subjects were classified as having inhibitory or facilitating CPM based on published reference values. Subsequently, muscle pain and hyperalgesia were induced by capsaicin injection into the non-dominant supraspinatus muscle. Before and 5, 10, 15, 20, 30, 40, 50 and 60 min later, PPTs were recorded at the supraspinatus, infraspinatus and deltoid muscle, ring finger and toe. Compared to baseline, PPTs decreased at the supraspinatus, infraspinatus and deltoid muscle (p≤0.03), and increased at the finger and toe (p<0.001). In facilitating CPM (n=10), hyperalgesia occurred at 5, 10, 15, 20 and 40 min (p≤0.026). In inhibitory CPM (n=20), hyperalgesia only occurred after 10 and 15 min (p≤0.03). At the infraspinatus muscle, groups differed after 5 and 40 min (p≤0.008). The results suggest that facilitating CPM is associated with more spreading hyperalgesia than inhibitory CPM. This implies that poor endogenous pain modulation may predispose to muscle pain and spreading hyperalgesia after injury, and suggest that strategies to enhance endogenous pain modulation may provide clinical benefits.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call