Abstract

Hexagonal honeycombs have exhibited significant advantages in energy absorption and they are increasingly used as absorbers under crush conditions. The in-plane crushing process of imperfect hexagonal honeycombs with concentrated rigid inclusions defects is simulated using finite element simulations. In each case, a constant velocity is applied to an impact plate which then crushed the honeycomb. Simulation results indicate that the defect location has a great influence on the deformation modes, especially at low and moderate velocity. After analyzing the apparent reflection about dynamic response at the impact end, the respective influences of local fraction of inclusions and foil thickness (relative density) on the crushing plateau stress on account of the crushing velocity are further discussed. Furthermore, the energy absorption capacity under constant velocity loading is studied. Due to the distribution of the concentrated rigid inclusions defects, the energy absorption can be controlled effectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call