Abstract

Theoretical analysis and numerical simulation methods were used to study the in-plane crushing behavior of single-cell structures and regular and composite honeycombs. Square, hexagonal, and circular honeycombs were selected as honeycomb layers to establish composite honeycomb models in the form of composite structures and realize the complementary advantages of honeycombs with type I and type II structures. The effects of honeycomb layer arrangement, plastic collapse strength, relative density, and crushing velocity on the deformation mode, plateau stress, load uniformity, and energy absorption performance of the composite honeycombs were mainly considered. A semi-empirical formula for plateau stress and energy absorption rate per unit mass for the composite honeycombs was developed. The results showed that the arrangement mode of honeycomb layers is an important factor that affects their mechanical properties. Appropriately selecting the arrangement of honeycomb layers and the proportion of honeycomb layers with different structures in a composite honeycomb can effectively improve its load uniformity and control the magnitude of plateau stress and energy absorption capacity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call