Abstract

The effects of cold working and heat treatment on caustic stress corrosion cracking (SCC) of mill annealed (MA) alloy 800M in boiling solution of 50%NaOH+0.3%SiO2+0.3%Na2S2O3 were investigated by means of microstructure examination, tensile test, X-ray stress analysis, SCC testing of C-rings, Auger electron spectroscopy (AES), scanning electron microscopy (SEM) and metallography. The microstructure of alloy 800M under tested conditions was austenite. With a train of 25% by cold working, the grains of alloy 800M became longer, yield strength (YS) and ultimate tensile strength (UTS) increased, elongation (δ ) decreased, residual stress and the susceptibility to SCC increased. With increasing temperature of heat treatment of alloy 800M with cold working, the grains became bigger , residual stress, YS and UTS decreased and δ increased, the susceptibility to SCC of alloy 800M decreased. In boiling caustic solution, SCC cracks on the surfaces of C-ring specimens polarized potentiostatically at –20mV/SCE initiated from pitting and propagated along grain boundaries. AES analysis indicated that the surface films on MA alloy 800M were enriched in nickel and depleted in iron and chromium.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.