Abstract

Fungal polysaccharides have attracted wide attention because of their medical pharmaceutical and health care value. So far, many efforts have been made in strain improvement to produce polysaccharides on a large scale at low cost. Here, a novel cold plasma-induced strain improvement technology was employed to pretreat Pleurotus ostreatus CGMCC 5.374 by radio-frequency (RF) low-vacuum cold plasma (LVCP) for the purpose of obtaining a high-yield polysaccharide strain. The optimum pretreatment conditions including discharge power, treatment time, and working pressure were determined by single factor and orthogonal experiment in succession. Furthermore, transcriptome analysis was conducted to study the effects of RF-LVCP on cell metabolism and proliferation. Results showed that under the optimal condition of discharge power of 130 W, treatment time of 25s and working pressure of 140Pa, polysaccharide content in mycelium was increased by 3.16% after 6days in comparison to the original strain. Transcriptome analysis showed that RF-LVCP is helpful for specific gene transcription profiles, Gene Ontology (GO) and KEGG pathways, of which the differentially expressed genes (DEGs) were mainly involve with the up-regulation of polysaccharide transport, physiology, synthesis and metabolism, as well as the down-regulation of polysaccharide hydrolysis and macromolecular degradation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call